Отзывы пользователей

Задачи на работу с решениями.

Задачи на работу

К этой группе задач относятся задачи, в которых говорится о трех величинах: работе А, времени t, в течение которого производится работа, производительности Р – работе, произведенной в единицу времени. Эти три величины связаны с уравнением А=Р* t. К задачам на работу относят и задачи, связанные с наполнением и опорожнением резервуаров (сосудов, баков, бассейнов и т.п.) с помощью труб, насосов и других приспособлений. В качестве произведенной работы в этом случае рассматривают объем перекачанной воды.

Задачи на работу, вообще говоря, можно отнести к группе задач на движение, так как в задачах такого типа можно считать, что вся работа или объем резервуара играют роль расстояния, а производительности объектов, совершающих работу, аналогичны скоростям движения. Однако по фабуле эти задачи естественным образом различаются, причем часть задач на работу имеют свои специфические приемы решения. Так, в тех задачах, в которых объем выполняемой работы не задан, вся работа принимается за единицу.

 

Пример 1. Две бригады должны были выполнить заказ за 12 дней. После 8 дней совместной работы первая бригада получила другое задание, поэтому вторая бригада заканчивала выполнение заказа еще 7 дней. За сколько дней могла бы выполнить заказ каждая из бригад, работая отдельно.

 

Р е ш е н и е. Пусть первая бригада выполняет задание за х дней, вторая бригада – за у дней. Примем всю работу за единицу. Тогда 1/х – производительность первой бригады, а 1/у – второй. Так как две бригады должны выполнить заказ за 12 дней, то получим первое уравнение

12(1/х+ 1/у)=1

Из второго условия следует, что вторая бригада работала 15 дней, а первая - только 8 дней. Значит, второе уравнение имеет вид

8/х+15/у=1

Таким образом, имеем систему: 12/x+12/y=1, 8/x+15/y=1

Вычтем из второго уравнения первое, получим: 21/у=1 ? у=21. Тогда 12/х+12/21=1 ? 12/х=3/7 ? х=28.

О т в е т: за 28 дней выполнит заказ первая бригада, за 21 день – вторая.

 

Пример 2. В бассейн проведены две трубы – подающая и отводящая, причем через первую трубу бассейн наполняется на 2 ч дольше, чем через вторую вода из бассейна выливается. При заполненном на одну треть бассейне были открыты обе трубы, и бассейн оказался пустым спустя 8 ч. За сколько часов через одну первую трубу может наполниться бассейн, и за сколько времени через одну вторую трубу может осушиться полный бассейн?

Р е ш е н и е: Пусть V м3 – объем бассейна, х м3 /ч – производительность подающей трубы, у м3 /ч - отводящей. Тогда V/x ч – время, необходимое подающей трубе для заполнения бассейна, V/у ч – время, необходимое отводящей на осушение бассейна. По условию задачи

V/x- V/у=2.

Так как производительность отводящей трубы больше производительности наполняющей, то при включенных обеих трубах будет происходить осушение бассейна и одна треть бассейна осушится за время (V/3)(у-х), которое по условию задачи равно 8 ч. Итак, условие задачи может быть записано в виде системы двух уравнений с тремя неизвестными:

В задаче необходимо найти V/х и V/у. Выделим в уравнениях комбинацию неизвестных V/х и V/у, записав систему в виде: V/x-V/y=2, V/(y-x)=24 или V/x-V/y=2, y/V-x/V=1/24

Вводя новые неизвестные V/х=а и V/у=b, получаем следующую систему: a-b=2, 1/b-1/a=1/24

Подставляя во второе уравнение выражение a=b+2, имеем уравнение относительно b:   1/b-1/(b+2)=1/24

решив которое найдем b1=6, b2=-8. Условию задачи удовлетворяют первый корень b1=6(ч). Из первого уравнения последней системы находим а=8(ч), т.е. первая труба наполняет бассейн за 8ч.

О т в е т: через первую трубу бассейн наполнится через 8 ч, через вторую трубу бассейн осушится через 6 ч.

 

 

Пример 3. Одна тракторная бригада должна вспахать 240 га, а другая на 35% больше, чем первая. Первая бригада, вспахивая ежедневно на 3 га меньше второй, закончила работу на 2 дня раньше, чем вторая бригада. Сколько гектаров вспахивала каждая бригада ежедневно?

 

Р е ш е н и е. Найдем 35% от 240 га: 240 га ? 35%/100%=84 га. Следовательно, вторая бригада должна была вспахать 240 га+84 га=324 га. Пусть первая бригада вспахивала ежедневно х га. Тогда вторая бригада вспахивала ежедневно (х+3) га; 240/х – время работы первой бригады; 324/(х+3) – время работы второй бригады. По условию задачи первая бригада закончила работу на 2 дня раньше, чем вторая, поэтому имеем уравнение 324/(x+3)-240/x=2

которое после преобразовании можно записать так: 324x-240x-720=2x2+6x

2x2-78x+720=0

X2-39x+360=0

Решив квадратное уравнение, находим х1=24, х2=15. Это норма первой бригады. Следовательно, вторая бригада вспахивала в день 27 га и 18 га соответственно. Оба решения удовлетворяют условию задачи.

О т в е т: 24 га в день вспахивала первая бригада, 27 га – вторая; 15 га в день вспахивала первая бригада, 18 га – первая.

 

 
Поделиться:

Комментарии 

 
вася, 5 Мая 2014 г. в 16:41 | цитировать
Фигня
 
 
петя, 17 Октября 2013 г. в 17:02 | цитировать
херня нечего нету
 
 
Михаил, 1 Октября 2013 г. в 20:21 | цитировать
В строительстве дороги принимали участие 2 бригады , причём число рабочих первой бригады составило 52% числа всех рабочих 2ух бригад . Сколько рабочих в 2ух бригадах , если в первой бригаде на 2 человека больше?
 
 
А.А.Позднякова, 17 Марта 2013 г. в 22:34 | цитировать
по
 
 
Andy-Vancleef, 16 Декабря 2012 г. в 19:31 | цитировать
Цитирую аскольд:
за два дня было вспахано 240га. Во второй день вспахали 7/9 того,что было вспахано в первый день. Сколько гектаров земли было вспахано в каждый из этих дней

х+х*7/9=240 х+х*7/9=х*16/9=240 240*9= 16х 2160=16х х=135 х*7/9= 135*7/9=105
 
 
аскольд, 12 Декабря 2012 г. в 16:46 | цитировать
за два дня было вспахано 240га. Во второй день вспахали 7/9 того,что было вспахано в первый день. Сколько гектаров земли было вспахано в каждый из этих дней
 
 
влад, 24 Октября 2012 г. в 15:08 | цитировать
ГДЗ На строительстве работали две бригады. После 5 дней совместной работы вторую бригаду перевели на другой объект.Оставшуюся часть работы первая бригада закончила за 9 дней.