Отзывы пользователей

гдз

Решение задач с помощью уравнения на проценты.


Проблема заключается в том, что даже при решении несложных задач, возникают затруднения при переводе текста задачи на язык уравнений.

Систематизируем знания по данному вопросу.

Неизвестную величину обозначим через Х, тогда

  • чтобы найти 20% от нее, надо 0,2Х;
  • чтобы увеличить ее, например, на 10%, надо Х+0,1Х=1,1Х;
  • чтобы уменьшить ее, например, на 30%, надо Х-0,3Х=0,7Х,
  • в общем виде: если 0 < Р < 100,
  • чтобы найти Р% от Х, надо 0,РХ;
  • чтобы увеличить ее на Р%, надо Х+0,РХ=1,РХ;
  • чтобы уменьшить ее на Р%, надо Х-0,РХ=(1-0,Р)Х, далее составляем уравнение, соответствующее условию задачи.

Задача. В двух школах поселка было 1500 учащихся. Через год число учащихся первой школы увеличилось на 10%, а второй – на 20%, и в результате общее число стало равным 1720. Сколько учащихся было в каждой школе первоначально?

Решение: Пусть Х учащихся было в первой школе, тогда (1500-Х) учащихся было во второй школе. После увеличения на 10% учащихся первой школы их стало Х+0,1Х=1,1Х, а во второй школе стало (1500-Х)+0,2(1500-Х)=1500-Х+300-0,2Х=1800-1,2Х учащихся. В результате их общее число стало равным 1720. Составим уравнение

1,1Х+1800-1,2Х=1720

-0,1Х=-80

Х=800

Таким образом получили, что 800 учащихся было в первой школе, тогда 700 учащихся было во второй школе первоначально.

Ответ: 800 и 700 учащихся.

 
Поделиться:

Комментарии 

 
никита, 4 Ноября 2012 г. в 19:13 | цитировать
788 рублей-100% 17рублей-х%