Отзывы пользователей

Олимпиадная задача по математике из коллекции задач Турнира Ломоносова на темы: Линейные неравенства и системы неравенств, Задачи с неравенствами, Разбор случаев.

Условие

Али-Баба пришел в пещеру, где есть золото, алмазы и сундук, в котором их можно унести. Полный сундук золота весит 200 кг, полный сундук алмазов — 40 кг, пустой сундук ничего не весит. Килограмм золота стоит на базаре 20 динаров, килограмм алмазов — 60 динаров. Али-Баба может поднять и унести не более 100 кг. Сколько денег он может получить за сокровища, которые он принесет из пещеры за один раз?

Решение

Предположим, что Али-Баба смог унести из пещеры x кг золота и y кг алмазов. В этом случае он сможет получить 20x + 60y динаров. Поскольку Али-Баба может поднять не более 100 кг, то

Кроме того, 1 кг золота занимает часть сундука, а 1 кг алмазов занимает часть сундука. Значит, взятые Али-Бабой сокровища займут часть сундука. В распоряжении Али-Бабы только один сундук, поэтому получаем новое ограничение на количество взятого им сокровища:

или, умножив последнее неравенство на 200,

Сложим неравенства (*) и (**): 2x + 6y ≤ 300 Умножим обе части последнего неравенства на 10: 20x + 60y ≤ 3000 Значит, Али-Баба сможет получить за сокровища не более 3000 динаров.

Осталось показать, что Али-Баба сможет унести сокровища на 3000 динаров. Для этого, очевидно, необходимо и достаточно чтобы в неравенствах (*) и (**) были выполнены равенства. Решив соответствующую систему двух уравнений, найдем x = 75, y = 25.

Итак, Али-Баба сможет получить 3000 динаров, взяв из пещеры 75 кг золота и 25 кг алмазов.

 
Поделиться: